
Designing Stimuli (or Anything)
Reproducibly

Jack E. Taylor

SIPS 2021

https://jackedtaylor.github.io/SIPS2021/

Today’s Session

▪ How can we design lists of stimuli reproducibly?

▪ Focusing on “sample” stimuli

▪ Explain methods, then show example code

▪ Can implement solutions in other languages

(e.g., Python, MATLAB, Julia, Javascript, heck

even Excel formulas)

▪ No programming knowledge necessary to

understand what’s going on

▪ Some programming knowledge necessary to

apply the methods yourself

Website with slides and example code:

https://jackedtaylor.github.io/SIPS2021/

https://jackedtaylor.github.io/SIPS2021/

This Session

15-20 minute sections

5ish minute breaks

Designing Stimuli (or Anything) Reproducibly

▪ What do we mean by stimuli?

▪ What do we mean by reproducibility?

▪ How can we generate stimuli reproducibly?

▪ Item-wise versus distribution-wise approaches

▪ Distribution-wise matching

▪ Assumption-free distribution-wise matching

▪ Item-wise matching

▪ LexOPS

▪ Propensity score matching

▪ Matching continuous independent variables

▪ Reporting matching in Methods sections

▪ Applications to things other than designing stimuli

▪ Summary, Questions, and Answers

1)

2)

3)

4)

Introductions

▪ PhD student at University of Glasgow

▪ Psycholinguistics: Orthography and Semantics

▪ EEG Research

▪ Word nerd

▪ Cat Person

▪ One of those people who will spend 2 hours writing

reproducible functions if it means I don’t have to

spend 20 minutes doing something by hand

▪ Currently looking for Post-Doctoral positions

Guillaume RousseletSara Sereno

Part 1/4

What is a
Stimulus?

Anything you present
to a participant to
elicit a response

One stimulus =
Something presented
on a single trial

“PARAMETRIC” STIMULI

▪ Can use any combination of multiple parameters

to generate novel items

▪ Potentially infinite in number

▪ Parameters defining the stimulus known exactly

▪ E.g., pseudowords, procedurally generated faces

“SAMPLE” STIMULI

▪ Sampled from a population of existing items

▪ Only a finite number of candidates

▪ Parameters defining the stimulus have to be

inferred

▪ E.g., real words, images of real faces

spinkle

orange

What is a
control

variable?

A potentially confounding variable
which you don’t want to pollute your
effect of interest

parametric stimuli: just create items
which do not differ in the control
variable

sample stimuli: identify and select
items such that the control variable
doesn’t confound your effect of
interest

Reproducibility

Can other people reproduce the

method by which you generated your

stimuli?

▪ For parametric stimuli, you can just

share the code

▪ Are sample stimuli reproducible?

How do people
report picking
their “sample”

stimuli?

▪ “The two conditions were matched in terms of word

length, word frequency, and age of acquisition.

Independent sample t tests confirmed that the

conditions were suitably controlled (all p values > .05).”

- Foo et al. (2005): Revisiting the Effect of Bar

▪ “Items in the two conditions were matched pairwise in

terms of word length, word frequency, and age of

acquisition. Paired sample t tests confirmed that the

conditions were suitably controlled (all p values > .05).”

- Foo et al. (2003): The Effect of Bar on Word Recognition

Distribution-Wise

Matching

Item-Wise

Matching

How are people
picking their

“sample” stimuli?

Distribution-Wise
Approaches to

Matching

Part 2/4

Distribution-Wise Matching

▪ The full distribution in one condition

is matched with the full distribution in

the other.

▪ Results in independent conditions

which are similarly distributed on

control variables.

▪ Can control how precise this

matching is.

Distribution-
Wise Matching

Manually

How are people currently matching distributions?

1. Identify/create databases with the variables you need.

2. Identify filters and apply.

3. Identify conditions, and get lists of items that fit each

condition.

4. Try to pick items which balance each other out across

the conditions.

5. Check the conditions are similarly distributed using a

statistical test or comparing means and SDs.

DISTRIBUTION-WISE MATCHING WITH CODE

▪ Randomly pick a sample of items which fits the conditions.

▪ Calculate a summary statistic for how close the samples are

▪ Store the result and a seed to recreate the stimuli

▪ Repeat the process many times

▪ Select the best stimulus (e.g., smallest difference in mean

and SD)

What’s wrong with matching
on distributional parameters?

▪ Need to specify a distribution that

describes the variable well

▪ Variable might not have that

distribution in a random sample

anyway

▪ Could add a check for

appropriateness of the distribution

assumptions

Or…

Could use an assumption-free measure

of distributional similarity

Assumption-Free
Measures of
Distributional

Similarity

Kolmogrov-Smirnov Statistic (Kolmogrov, 1933; Smirnov, 1948)

Overlapping Index (Pastore & Calcagni, 2019)

ASSUMPTION-FREE DISTRIBUTION-WISE MATCHING

▪ Randomly pick a sample of items which fits the conditions.

▪ Calculate a summary statistic for distributional similarity

▪ Store the result and a seed to recreate the stimuli

▪ Repeat the process many times

▪ Select the best stimulus (e.g., largest overlapping index)

A distribution-wise
example with code

What else could
we implement

with distribution-
wise matching?

▪Filtering the pool

▪Matching multiple variables

simultaneously

▪Weighting distributional similarity

▪Maximising representativeness as

distributional similarity to the pool

Item-Wise
Approaches
to Matching

Part 3/4

Item-Wise Matching

▪ Each item is matched with one item in every

other condition.

▪ Results in items across conditions that are

directly comparable to one another.

▪ Can control how precise this matching is.

▪ Distributional similarity is a necessary by-

product of item-wise matching.

▪ Degree of distributional similarity is defined

by the precision of the matching.

Item-Wise
Matching
Manually

How are people currently matching items?

1. Identify/create databases with the variables you need.

2. Identify filters and apply.

3. Identify conditions, and get lists of items that fit each

condition.

4. Pick an item in either condition.

5. Try find an item in the other condition which is closely

matched in the control variables.

6. If you find a match, make note of it and remove both

items from the pool.

7. Repeat steps 4 – 6 until you have as many stimuli as

you want.

ITEM-WISE MATCHING WITH CODE

▪ Randomly pick an item from one condition.

▪ Try find one item from every other

condition which is suitably close in the

control variables.

▪ If you find a match, record it.

https://github.com/JackEdTaylor/LexOPS

▪ An R package for generating item-

wise matches in a reproducible way.

▪ Similar in style to the tidyverse,

focusing on readability.

▪ Some R knowledge required, but

there is a Shiny app for users less

familiar with R.

Three main functions in LexOPS

split_by()

specify
independent
variables

1

control_for()

specify control
variables

2

generate()

run the matching
algorithm

3

An item-wise example
with code

EUCLIDEAN DISTANCE

▪ Can define an n-dimensional space, where

each dimension is an individual numeric

variable you want to control.

▪ Categorical variables can be recoded into

k-1 dummy-coded variables (e.g., to

values of 0 and 1), where k is the number

of categories.

▪ Scale variables to have equal weighting.

▪ Can weight dimensions by the relative

importance of their variables being

matched, 𝑤𝑖.

▪ Can then identify items from each

condition which are suitably close to each

other in this space.

𝑑 𝑎, 𝑏 = ෍

𝑖=1

𝑛

(𝑤𝑖 ⋅ (𝑎𝑖 − 𝑏𝑖))
2

VARIABLE-SPECIFIC

TOLERANCES

WEIGHTED

EUCLIDEAN

TOLERANCES

UNWEIGHTED

EUCLIDEAN

TOLERANCES

df %>%

split_by(iv, “a” ~ ”b”) %>%

control_for(x, -0.25:0.25) %>%

control_for(y, -0.75:0.75) %>%

generate(1)

df %>%

split_by(iv, “a” ~ ”b”) %>%

control_for_euc(

c(x, y), 0:0.5

) %>%

generate(1)

df %>%
split_by(iv, “a” ~ ”b”) %>%
control_for_euc(

c(x, y), 0:0.5,
weights = c(3, 1)

) %>%
generate(1)

An example with code

Other Useful LexOPS Functions

▪ control_for_map() – Define higher-order controls which are calculated each iteration with

a function. Lets you control for more complicated variables like semantic similarity.

▪ split_random() – Perform a random split rather than splitting on a variable. This is useful for

within subjects designs which alter things other than stimuli, e.g., task effects.

▪ plot_sample() – See how representative the generated stimuli are on the variables in your

design.

▪ plot_iterations() – Diagnose the algorithm’s results. Shows the cumulative count of items

generated over all iterations.

▪ cite_design() – List the variables you’ve used which probably need describing and citing

when you write up your methods.

▪ run_shiny() – Run the LexOPS shiny app. This is a friendly GUI with lots of useful

visualisation, which can translate options to reproducible LexOPS code.

https://github.com/JackEdTaylor/LexOPS

SOFTWARE PACKAGES FOR ITEM-WISE MATCHING

Package/Library Language No. Conditions Type

designmatch R 2 Optimal propensity score matching

Matching R 2 Optimal propensity score matching

MatchIt R 2 Optimal propensity score matching

LexOPS R 2-∞ Tolerance matching

optmatch R 2 Optimal propensity score matching

causalinference Python 2 Optimal propensity score matching

matchpairs() function MATLAB/OCTAVE 2 Optimal pairwise distance

Propensity
Score Matching

▪ Propensity Score: conditional probability of

being assigned to a treatment (i.e., binary

outcome), given a vector of covariates

▪ Pairwise matching of propensity score across

treatment and control ensures conditions do not

differ in covariates

▪ Can be used as:

▪ Method for generating samples before an

experiment

▪ Method for accurately estimating effect size in

observational study

Rounding
Up

Part 4/4

Controlling for
Variables

when IVs are
Continuous

Controlling for Variables
when IVs are Continuous

▪ Unnecessary binning of continuous

variables can reduce sensitivity to

effects

▪ Can just use continuous predictors

▪ Would still want to minimise the

influence of confounding variables

One possible solution:

minimise mutual information

MINIMISING MUTUAL INFORMATION WITH CODE

▪ Randomly pick a sample of items.

▪ Calculate the mutual information between the predictor

and control variable

▪ Store the result and a seed to recreate the stimuli

▪ Repeat the process many times

▪ Select the best stimulus set (i.e., smallest MI)

Reporting
Methods of

Designing
Stimuli

Reporting Methods of Designing Stimuli

▪ Where did your pool of candidates come from?

▪ Where did you get the data for the variables from?

▪ What kind of matching/controlling did you use

(item/distribution/continuous)?

▪ How many iterations did you run?

▪ How closely are items matched?

▪ How many items did you create?

▪ Can you visualise it?

▪ Where is the code?

▪ Even without the code, could someone reproduce

your methods just from your description?

What not to do
when reporting
stimulus design

“Stimuli comprised 100 male faces and 100
female faces. Conditions were matched in
terms of face width, face height, and age.
Independent sample t tests confirmed that the
conditions were suitably controlled (all p
values > .05).”
- Foo et al. (2005): Revisiting the Effect of Bar

“Stimuli comprised 100 male faces and 100
female faces. Items were matched pairwise in
terms of face width, face height, and age.
Paired sample t tests confirmed that the
conditions were suitably controlled (all p
values > .05).”
- Foo et al. (2003): The Effect of Bar on Face
Recognition

What to do instead

“Stimuli comprised 100 male faces and 100 female faces from the
Chicago Face Database (Ma et al., 2015). The two conditions were
matched on the distributions of face width, face height, and age by
maximising the overlapping index (Pastore & Calcagni, 2019)
between the two conditions. Overlapping index values were
calculated using the overlapping package (Pastore & Calcagni,
2019) for R (R Core Team, 2020). Of 30000 random samples, the
sample with the maximum overlap in all variables, between the two
conditions, was selected. The full list of stimuli, and the code to
generate it (with a seed for reproducibility) is available at
osf.io/wdbiw. The selected stimuli are presented in Figure 1.”

“Stimuli comprised 100 male faces and 100 female faces from the
Chicago Face Database (Ma et al., 2015). Faces were matched
pairwise on the variables of face width (within ±1 pixel), face
height (within ±5 pixels), and age (within ±0.5 years), using the
LexOPS package (Taylor et al., 2020) for R (R Core Team, 2020). The
full list of stimuli, and the code to generate it (with a seed for
reproducibility) is available at osf.io/wdbiw. The selected stimuli
are presented in Figure 1.”

Applications to
things other
than stimuli

Applications to
things other
than stimuli

Selecting matched participants from a

pool for a between-subjects design

Analysis of megastudy data where you

only analyse matched subsets of the

data (common use of propensity score

matching)

Dating?

Summary,
Questions,
Answers

▪ Design stimuli with code, and share the code, to be

reproducible and save time

▪ Report what you did specifically, and show the data with

a visualisation

Guillaume

Rousselet

Sara

Sereno

Alistair

Beith

