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Today’s Session

▪ How can we design lists of stimuli reproducibly?

▪ Focusing on “sample” stimuli

▪ Explain methods, then show example code

▪ Can implement solutions in other languages 

(e.g., Python, MATLAB, Julia, Javascript, heck 

even Excel formulas)

▪ No programming knowledge necessary to 

understand what’s going on

▪ Some programming knowledge necessary to 

apply the methods yourself

Website with slides and example code:

https://jackedtaylor.github.io/SIPS2021/

https://jackedtaylor.github.io/SIPS2021/


This Session

15-20 minute sections

5ish minute breaks

Designing Stimuli (or Anything) Reproducibly

▪ What do we mean by stimuli?

▪ What do we mean by reproducibility?

▪ How can we generate stimuli reproducibly?

▪ Item-wise versus distribution-wise approaches

▪ Distribution-wise matching

▪ Assumption-free distribution-wise matching

▪ Item-wise matching

▪ LexOPS

▪ Propensity score matching

▪ Matching continuous independent variables

▪ Reporting matching in Methods sections

▪ Applications to things other than designing stimuli

▪ Summary, Questions, and Answers

1)

2)

3)

4)



Introductions

▪ PhD student at University of Glasgow

▪ Psycholinguistics: Orthography and Semantics

▪ EEG Research

▪ Word nerd

▪ Cat Person

▪ One of those people who will spend 2 hours writing 

reproducible functions if it means I don’t have to 

spend 20 minutes doing something by hand

▪ Currently looking for Post-Doctoral positions

Guillaume RousseletSara Sereno
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What is a 
Stimulus?

Anything you present 
to a participant to 
elicit a response

One stimulus = 
Something presented 
on a single trial



“PARAMETRIC” STIMULI

▪ Can use any combination of multiple parameters 

to generate novel items

▪ Potentially infinite in number

▪ Parameters defining the stimulus known exactly

▪ E.g., pseudowords, procedurally generated faces

“SAMPLE” STIMULI

▪ Sampled from a population of existing items

▪ Only a finite number of candidates

▪ Parameters defining the stimulus have to be 

inferred

▪ E.g., real words, images of real faces

spinkle

orange



What is a 
control 

variable?

A potentially confounding variable 
which you don’t want to pollute your 
effect of interest

parametric stimuli: just create items 
which do not differ in the control 
variable

sample stimuli: identify and select 
items such that the control variable 
doesn’t confound your effect of 
interest



Reproducibility

Can other people reproduce the 

method by which you generated your 

stimuli?

▪ For parametric stimuli, you can just 

share the code

▪ Are sample stimuli reproducible?



How do people 
report picking 
their “sample” 

stimuli?

▪ “The two conditions were matched in terms of word 

length, word frequency, and age of acquisition. 

Independent sample t tests confirmed that the 

conditions were suitably controlled (all p values > .05).”

- Foo et al. (2005): Revisiting the Effect of Bar

▪ “Items in the two conditions were matched pairwise in 

terms of word length, word frequency, and age of 

acquisition. Paired sample t tests confirmed that the 

conditions were suitably controlled (all p values > .05).”

- Foo et al. (2003): The Effect of Bar on Word Recognition



Distribution-Wise 

Matching

Item-Wise 

Matching

How are people 
picking their 

“sample” stimuli?



Distribution-Wise 
Approaches to 

Matching
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Distribution-Wise Matching

▪ The full distribution in one condition 

is matched with the full distribution in 

the other.

▪ Results in independent conditions 

which are similarly distributed on 

control variables.

▪ Can control how precise this 

matching is.



Distribution-
Wise Matching 

Manually

How are people currently matching distributions?

1. Identify/create databases with the variables you need.

2. Identify filters and apply.

3. Identify conditions, and get lists of items that fit each 

condition.

4. Try to pick items which balance each other out across 

the conditions.

5. Check the conditions are similarly distributed using a 

statistical test or comparing means and SDs.



DISTRIBUTION-WISE MATCHING WITH CODE

▪ Randomly pick a sample of items which fits the conditions.

▪ Calculate a summary statistic for how close the samples are

▪ Store the result and a seed to recreate the stimuli

▪ Repeat the process many times

▪ Select the best stimulus (e.g., smallest difference in mean 

and SD)



What’s wrong with matching 
on distributional parameters?

▪ Need to specify a distribution that 

describes the variable well

▪ Variable might not have that 

distribution in a random sample 

anyway

▪ Could add a check for 

appropriateness of the distribution 

assumptions

Or…

Could use an assumption-free measure 

of distributional similarity



Assumption-Free 
Measures of 
Distributional 

Similarity

Kolmogrov-Smirnov Statistic (Kolmogrov, 1933; Smirnov, 1948)

Overlapping Index (Pastore & Calcagni, 2019)



ASSUMPTION-FREE DISTRIBUTION-WISE MATCHING

▪ Randomly pick a sample of items which fits the conditions.

▪ Calculate a summary statistic for distributional similarity

▪ Store the result and a seed to recreate the stimuli

▪ Repeat the process many times

▪ Select the best stimulus (e.g., largest overlapping index)



A distribution-wise 
example with code



What else could 
we implement 

with distribution-
wise matching?

▪Filtering the pool

▪Matching multiple variables 

simultaneously

▪Weighting distributional similarity

▪Maximising representativeness as 

distributional similarity to the pool



Item-Wise 
Approaches 
to Matching
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Item-Wise Matching

▪ Each item is matched with one item in every 

other condition.

▪ Results in items across conditions that are 

directly comparable to one another.

▪ Can control how precise this matching is.

▪ Distributional similarity is a necessary by-

product of item-wise matching.

▪ Degree of distributional similarity is defined 

by the precision of the matching.



Item-Wise 
Matching 
Manually

How are people currently matching items?

1. Identify/create databases with the variables you need.

2. Identify filters and apply.

3. Identify conditions, and get lists of items that fit each 

condition.

4. Pick an item in either condition.

5. Try find an item in the other condition which is closely 

matched in the control variables.

6. If you find a match, make note of it and remove both 

items from the pool.

7. Repeat steps 4 – 6 until you have as many stimuli as 

you want.



ITEM-WISE MATCHING WITH CODE

▪ Randomly pick an item from one condition.

▪ Try find one item from every other 

condition which is suitably close in the 

control variables.

▪ If you find a match, record it.



https://github.com/JackEdTaylor/LexOPS



▪ An R package for generating item-

wise matches in a reproducible way.

▪ Similar in style to the tidyverse, 

focusing on readability.

▪ Some R knowledge required, but 

there is a Shiny app for users less 

familiar with R.



Three main functions in LexOPS

split_by()

specify 
independent 
variables

1

control_for()

specify control 
variables

2

generate()

run the matching 
algorithm

3



An item-wise example 
with code



EUCLIDEAN DISTANCE

▪ Can define an n-dimensional space, where 

each dimension is an individual numeric 

variable you want to control.

▪ Categorical variables can be recoded into 

k-1 dummy-coded variables (e.g., to 

values of 0 and 1), where k is the number 

of categories.

▪ Scale variables to have equal weighting.

▪ Can weight dimensions by the relative 

importance of their variables being 

matched, 𝑤𝑖.

▪ Can then identify items from each 

condition which are suitably close to each 

other in this space.

𝑑 𝑎, 𝑏 = ෍

𝑖=1

𝑛

(𝑤𝑖 ⋅ (𝑎𝑖 − 𝑏𝑖))
2



VARIABLE-SPECIFIC

TOLERANCES

WEIGHTED

EUCLIDEAN

TOLERANCES

UNWEIGHTED

EUCLIDEAN

TOLERANCES

df %>%

split_by(iv, “a” ~ ”b”) %>%

control_for(x, -0.25:0.25) %>%

control_for(y, -0.75:0.75) %>%

generate(1)

df %>%

split_by(iv, “a” ~ ”b”) %>%

control_for_euc(

c(x, y), 0:0.5

) %>%

generate(1)

df %>%
split_by(iv, “a” ~ ”b”) %>%
control_for_euc(

c(x, y), 0:0.5,
weights = c(3, 1)

) %>%
generate(1)



An example with code



Other Useful LexOPS Functions

▪ control_for_map() – Define higher-order controls which are calculated each iteration with 

a function. Lets you control for more complicated variables like semantic similarity.

▪ split_random() – Perform a random split rather than splitting on a variable. This is useful for 

within subjects designs which alter things other than stimuli, e.g., task effects.

▪ plot_sample() – See how representative the generated stimuli are on the variables in your 

design.

▪ plot_iterations() – Diagnose the algorithm’s results. Shows the cumulative count of items 

generated over all iterations.

▪ cite_design() – List the variables you’ve used which probably need describing and citing 

when you write up your methods.

▪ run_shiny() – Run the LexOPS shiny app. This is a friendly GUI with lots of useful 

visualisation, which can translate options to reproducible LexOPS code.



https://github.com/JackEdTaylor/LexOPS



SOFTWARE PACKAGES FOR ITEM-WISE MATCHING

Package/Library Language No. Conditions Type

designmatch R 2 Optimal propensity score matching

Matching R 2 Optimal propensity score matching

MatchIt R 2 Optimal propensity score matching

LexOPS R 2-∞ Tolerance matching

optmatch R 2 Optimal propensity score matching

causalinference Python 2 Optimal propensity score matching

matchpairs() function MATLAB/OCTAVE 2 Optimal pairwise distance



Propensity 
Score Matching

▪ Propensity Score: conditional probability of 

being assigned to a treatment (i.e., binary 

outcome), given a vector of covariates

▪ Pairwise matching of propensity score across 

treatment and control ensures conditions do not 

differ in covariates

▪ Can be used as:

▪ Method for generating samples before an 

experiment

▪ Method for accurately estimating effect size in 

observational study



Rounding 
Up

Part 4/4



Controlling for 
Variables 

when IVs are 
Continuous



Controlling for Variables 
when IVs are Continuous

▪ Unnecessary binning of continuous 

variables can reduce sensitivity to 

effects

▪ Can just use continuous predictors

▪ Would still want to minimise the 

influence of confounding variables

One possible solution:

minimise mutual information



MINIMISING MUTUAL INFORMATION WITH CODE

▪ Randomly pick a sample of items.

▪ Calculate the mutual information between the predictor 

and control variable

▪ Store the result and a seed to recreate the stimuli

▪ Repeat the process many times

▪ Select the best stimulus set (i.e., smallest MI)



Reporting 
Methods of 

Designing 
Stimuli



Reporting Methods of Designing Stimuli

▪ Where did your pool of candidates come from?

▪ Where did you get the data for the variables from?

▪ What kind of matching/controlling did you use 

(item/distribution/continuous)?

▪ How many iterations did you run?

▪ How closely are items matched?

▪ How many items did you create?

▪ Can you visualise it?

▪ Where is the code?

▪ Even without the code, could someone reproduce 

your methods just from your description?



What not to do 
when reporting 
stimulus design

“Stimuli comprised 100 male faces and 100 
female faces.  Conditions were matched in 
terms of face width, face height, and age. 
Independent sample t tests confirmed that the 
conditions were suitably controlled (all p
values > .05).”
- Foo et al. (2005): Revisiting the Effect of Bar

“Stimuli comprised 100 male faces and 100 
female faces. Items were matched pairwise in 
terms of face width, face height, and age. 
Paired sample t tests confirmed that the 
conditions were suitably controlled (all p
values > .05).”
- Foo et al. (2003): The Effect of Bar on Face 
Recognition



What to do instead

“Stimuli comprised 100 male faces and 100 female faces from the 
Chicago Face Database (Ma et al., 2015). The two conditions were 
matched on the distributions of face width, face height, and age by 
maximising the overlapping index (Pastore & Calcagni, 2019) 
between the two conditions. Overlapping index values were 
calculated using the overlapping package (Pastore & Calcagni, 
2019) for R (R Core Team, 2020). Of 30000 random samples, the 
sample with the maximum overlap in all variables, between the two 
conditions, was selected. The full list of stimuli, and the code to 
generate it (with a seed for reproducibility) is available at 
osf.io/wdbiw. The selected stimuli are presented in Figure 1.”

“Stimuli comprised 100 male faces and 100 female faces from the 
Chicago Face Database (Ma et al., 2015).  Faces were matched 
pairwise on the variables of face width (within ±1 pixel), face 
height (within ±5 pixels), and age (within ±0.5 years), using the 
LexOPS package (Taylor et al., 2020) for R (R Core Team, 2020). The 
full list of stimuli, and the code to generate it (with a seed for 
reproducibility) is available at osf.io/wdbiw. The selected stimuli 
are presented in Figure 1.”



Applications to 
things other 
than stimuli



Applications to 
things other 
than stimuli

Selecting matched participants from a 

pool for a between-subjects design

Analysis of megastudy data where you 

only analyse matched subsets of the 

data (common use of propensity score 

matching)

Dating?



Summary, 
Questions, 
Answers

▪ Design stimuli with code, and share the code, to be 

reproducible and save time

▪ Report what you did specifically, and show the data with 

a visualisation

Guillaume

Rousselet

Sara

Sereno
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